
Explanation Generation Using ASP and Language
Models: A Case Study in Smart Home Scheduling

Van Nguyen1 and Tran Cao Son1

New Mexico State University
vnguyen,tson@cs.nmsu.edu

Abstract. The rapid growth of Artificial Intelligence (AI) applications gives rise
to explainable AI research whose quest is to answer questions related to why and
how a decision is made by an AI application. Besides the problem of identifying
the answer to the question, an equally important problem is that of presenting
the answer to the end-users who are often not familiar with the applications’
terminologies and lingo. In this paper, we describe a process that supports the
generation of natural language explanations via a case study in the smart home
scheduling application. In this process, answer set programming (ASP) is used to
identify contents of explanations and to generate dataset for the training of lan-
guage model, which is used for the generation of natural language explanations.

Keywords: Explainable AI · Natural Language Generation · Answer Set Pro-
gramming.

1 Introduction

In recent years, AI applications become more and more popular to nonexpert users and
have been used in many areas that affect everyone’s daily life. To protect individuals
from harmful decisions made by AI applications, the right to (an) explanation regulation
has been imposed (e.g., the EU GDPR law). Following this regulation, an user has the
right to be given an explanation for an output of the AI algorithm. This issue has led
to the rapid development of Explainable AI (see, e.g., surveys on explainable AI in [6,
12]) whose goal is to explain to users the decision of AI algorithms (or, more generally,
computer softwares). To make the matter more complicated, the explanation should
be understood by laymen. It is therefore desirable to present explanations in natural
language to the users. In this paper, we describe a case study in generating natural
language explanations for the smart home scheduling application ([9]).

2 Background: Smart Home Scheduling Problem and Language
Models

We present a brief review of the Smart Home Scheduling Problem (SHSP) and some
basics of language models. We assume that the readers are familiar with the basics of
ASP.

2 V. Nguyen, T. C. Son

2.1 Smart Home Scheduling Problems

In this section, we review the Smart Home Scheduling Problem (SHSP) with probabilis-
tic user preferences, which is formulated in [9].

Definition 1 (Smart Home Scheduling Problem) A smart home scheduling problem
P is a tuple 〈A,E,T,C,L,D〉, where

– A is a set of appliances (or devices), usually written as the set of integers {1, . . . , |A|}.
– E = (e1,e2, ...,e|A|) is a vector of positive real numbers, where each ei represents

the energy consumption of device i.
– T is a set of time slots, usually written as the set of integers {1, . . . , |T |}.
– C = (c1,c2, ...,c|T |) and L = (l1, l2, ..., l|T |) are vectors of non-negative real num-

bers, where ci and li represent the cost of 1 kWh and the maximum permissible
load of all the devices at time i, respectively.

– D is an |A|× |A| matrix, called dependency matrix, each cell D(i, j) represents a
hard constraint between devices i and j. The relations/constraints can be one of the
following types: (i) before (resp. after) means that the device imust be turned on
before (resp. after) device j; (ii) parallel (resp. not-parallel) means that the device
i must run in parallel (resp. must not run in parallel) with the device j; and (iii) nil
if the usage of the device i is independent from that of the device j.

Without the loss of generality, it is assumpted that each device in P is turned on
exactly once within |T | time slots. A user preference for a scheduling problem is defined
as follows.

Definition 2 (Probabilistic User Preference) A probabilistic user preference over a
scheduling problem P = 〈A,E,T,C,L,D〉 is a tuple C = 〈N,α,β ,λ 〉, where

– N is an |A| × |T | matrix, called preference matrix, where each cell N(i, j) is a
Normal distribution N (µi j, σi j) representing the probability distribution of the
user’s preference in turning the device i on at time slot j.

– α , called the cumulative satisfaction threshold, is a number representing the min-
imum acquired cumulative preference required by a user from a schedule.

– β is a number in the interval [0,1] representing the probability threshold, which
indicates the threshold of the probability that α will be achieved given a schedule
in order for a user to accept that schedule.

– λ is a number indicating the cost threshold that a user could accept.

Scheduling problems with probabilistic preferences are defined next.

Definition 3 (Smart Home Scheduling Problem with Probabilistic User Preferences)
A Smart Home Scheduling Problem (SHSP) with probabilistic user preferences (or p-
scheduling problem, for short) is a pair (P,C), where P is a scheduling problem and C
is a probabilistic preference over P.

For brevity in this paper, SHSPs are referred to SHSPs with probabilistic user pref-
erences.

Title Suppressed Due to Excessive Length 3

2.2 Language Model

Models that assign probabilities to sequences of words are called language models (LM)
[7]. Mathematically, a language model assigns probabilities to word sequences. The
simplest model that assigns probabilities to sentences and sequences of words is the
n-gram model. An n-gram is a sequence of n words. n-gram models can be used to
estimate the probability of the last word of an n-gram given the previous words, and
also to assign probabilities to entire sequences.

3 Preparing For Explanation: Content Generation

Given a SHSP problem (P,C), we assume that our AI system (e.g., the scheduler de-
scribed in [9]) generates a schedule for the devices in P that satisfies C (or optimal
with respect to C). For simplicity of the presentation, we will assume that the schedule
consists of atoms of the form on(d, t) (resp. off (d, t)), which says that device d should
be turned on (resp. off) at timeslot t.

We identify the problem of explaining a schedule H to a user with the problem of
explaining to a user that H meets the user’s preferences, expressed in C . In particularly,
we focus on answering the two questions that a homeowner is normally interested in:

– Q1: “Why is a device d or a set of devices {d1, . . ., dn} scheduled to turn on at time
t?”, and

– Q2: “Why is device d scheduled at time t1 instead of time t2?”.

In order to explain Q1 to the user, the system needs to present the user with the
preference indicating that d (or the set {d1, . . . ,dn}) should be turned on at t. On the
other hand, it is best to explain Q2 by either presenting some constraints in C that
would be violated or indicating the non-optimality of a schedule if d is scheduled at t2.

Given C and a schedule H, there are several ways to extract the information to
explain Q1-Q2 to a user. The ASP program π , shown in Listing 1.1, could be used for
this purpose.

Table 1 shows the atoms, their matrix representations and their meanings in the
program π .

Table 1. The atoms in the problem description

Atoms Represent matrix Meanings
cost(T,D) cost C the electrical cost at time T is D dollars per hour
dev(ID,TY PE,KW) energy usage E device ID consumes KW energy
be f ore(A,B), parallel(A,B),

dependency D order of the execution of device A and B
a f ter(A,B), nparallel(A,B)

pre f (ID,T,µ,σ) preference N
the user preference of executing device ID at time T
is represented by the normal distribution N (µ, σ)

Program π identifies conditions in C that are satisfied (or not satisfied) by H. For
convenience, we will write π(C ,H) to denote the program π with the two inputs C and

4 V. Nguyen, T. C. Son

H. Observe that max e, cost threshold, al pha and beta are constants in the program π

(given in C) representing parameters such as the maximal energy consumption accept-
able by the user (max e), etc. Lines 5-10 are for dependency between devices, Lines
12-13 for power safety, Lines 15-18 for user preference condition, and Lines 20-21 for
the cost. The code block from line 23 to 28 computes the user preference condition. We
encode the user preference condition as discussed in [9] .

Observe that π(C ,H) is not a program that generates the schedule H. It is a pos-
itive program and has a unique answer set which contains information related to the
preferences that are satisfied by H (e.g., condibe f ore(d1,d2, t1, t2) is true if there exists
a preference be f ore(d1,d2) and H contains on(d1, t1) and on(d2, t2) such that t1 < t2);
or whether the cost threshold is satisfied (e.g., costthr(s,cost threshold)); etc. While it
is sufficient to answer Question 1 by presenting the satisfied constraints related to the
device d (or the set of devices {d1, . . . ,Dn}) and the energy threshold is satisfied, Ques-
tion 2 requires the identification of the differences between two potential schedules. In
this paper, we will focus on the differences between the two answer sets of π(C ,H)
and π(C ,H ′).

4 A Language Model For SHSP

To create a LM for SHSP, we use of Transformer [13] because models trained by trans-
formers are shown to have competitive performances in natural language processing
and understanding [4, 2, 8, 11], and computer vision [10, 3, 5].

We take inspiration from [1] to create data for training of our language model us-
ing ASP. We generated data from all possible atoms in the program π . Each training
example is generated from an atom or a set of atoms, and is a string of format

[CLS]part1[SEP]part2[SEP], (1)

where CLS token indicates the result of classification tasks, which we do not use in
our case; SEP token indicates a separation; part1 is a description of an atom or a list
of atoms which carries a meaning; and part2 is the natural language sentence for the
meaning of the atom or the list of atoms described in part1.

For instance, a training example generated for the atom on(1,20) is the string “on(1,20)
has parameters 1 20 turn on<s>Device 1 is on at timeslot 20”.

The string “<s>” represents the SEP token. A training example generated for a list
of atoms can be “weight(1,1,5,5) weight(2,1,7,5) energythr(12,2,31)<s>At time slot 1,
2 devices turn on. The total energy is 12 kw.”.

Table 2 shows the atoms in the program π and their corresponding natural language
expressions. For simplicity of the presentation, we show only the atom condibe f ore,
representing the be f ore dependency, in Table 2.

We use an ASP program to generate the atoms as in Table 2, and map them with
their meaning in natural language to create synthetic data for training our language
model. Given the part1, the fine-tuned LM will generate the meaning of the atom(s)
described in the part1.

To evaluate the usability of GPT-2[SHSP], we evaluate it by computing its BLEU
score (automatic) as well as conducting a small scale user study.

Title Suppressed Due to Excessive Length 5

Table 2. The atoms of the program π and their meaning in natural language

Atoms Meanings
on(D,T) Device D is on at timeslot T .

weight(D,T,E,C)
Device D at timeslot T consumes E kWh and cost at that timeslot is
C cents per hour.

costthr(C,T HR) The total cost of the schedule is C and is less than T HR.
energythr(T,E,T HR) Energy consumption at timeslot T is E and is less than T HR.
condibe f ore(D1,D2,T 1,T 2) Device D1 turns on at T 1 before device D2 at T 2.
condipre f (PREF,SS) The estimated preference of the schedule is PREF and SS.

BLEU (BiLingual Evaluation Understudy) is a metric for automatically evaluating
machine-translated text. The BLEU score is a number between zero and one that mea-
sures the similarity of the machine-translated text to a set of high quality reference
translations. A value of 0 means that the machine-translated output has no overlap with
the reference translation (low quality) while a value of 1 means there is perfect over-
lap with the reference translations (high quality). Following the rough interpretation of
BLEU score1, a score that is larger than 0.3 can be considered understandable to good
translations. In evaluating GPT-2[SHSP], we consider the training data as the reference
translations and the generated text from GPT-2[SHSP] as the machine-translated text.
The average score for our LM is 0.33, which shows a relatively acceptable level of
translations in comparison with the synthetic data.

We also perform a small scale user study, in which, we sent out a survey to a group
of seven students in a class and asked them to evaluate the explanations in terms of “how
well they can be understood?”. The survey is available online 2. Overall, the reponses
3 shows that the participants could grasp the meaning of the texts generated by GPT-
2[SHSP], and there is no complaint in grammar or misuse of sequences of words in the
answers.

In summary, the BLEU score and the conducted experiments show that the explana-
tions generated using GPT-2[SHSP] are meaningful and can be understood by human
users.

5 Conclusions

In this paper, we investigate the use of language models in generating natural language
explanations in AI applications and consider the smart home scheduling problem as a
case study. We show that we can address an important problem in training a language
model, the problem of creating training data, by using ASP. By fine-tuning an existing
language model, we receive a language model that can generate explanations for the
smart home scheduling problem.

1 https://cloud.google.com/translate/automl/docs/evaluate
2 https://ida3rxjl4si.typeform.com/to/GYJX9Yc9
3 https://tinyurl.com/h82zp3a4

6 V. Nguyen, T. C. Son

References

1. Banerjee, P., Baral, C., Luo, M., Mitra, A., Pal, K., Son, T.C., Varshney, N.: Can transformers
reason about effects of actions? (2020)

2. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 (2020)

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end
object detection with transformers. In: European Conference on Computer Vision. pp. 213–
229. Springer (2020)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

6. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey
of methods for explaining black box models. ACM computing surveys (CSUR) 51(5), 1–42
(2018)

7. Keselj, V.: Speech and language processing daniel jurafsky and james h. martin (stanford
university and university of colorado at boulder) pearson prentice hall, 2009, xxxi+ 988 pp;
hardbound, isbn 978-0-13-187321-6, $115.00 (2009)

8. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 (2019)

9. Nguyen, V., Yeoh, W., Son, T.C., Kreinovich, V., Le, T.: A scheduler for smart homes with
probabilistic user preferences. In: International Conference on Principles and Practice of
Multi-Agent Systems. pp. 138–152. Springer (2019)

10. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image trans-
former. In: International Conference on Machine Learning. pp. 4055–4064. PMLR (2018)

11. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

12. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.R.: Explainable AI: inter-
preting, explaining and visualizing deep learning, vol. 11700. Springer Nature (2019)

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need (2017)

A Program for Computing Contents of Explanations

Note: This program is included only for review.

Listing 1.1. Program π: Computing What to Say?

1 max_energy(max_e).

2 device(D) :- dev(D,_,_). timeslot(X) :- cost(X,_).

3 weight(D,T,E,M) :- on(D,T), dev(D,_,E), cost(T,M).

5 condibefore(D1,D2,T1,T2):-before(D1,D2),on(D1,T1),on(D2,T2),T1 <T2.

6 condiafter(D1,D2,T1,T2) :-after(D1,D2), on(D1,T1),on(D2,T2),T1 >T2.

7 condiparallel(D1,D2,T1) :- parallel(D1,D2),on(D1,T1),

8 on(D2,T2),T1 = T2.

Title Suppressed Due to Excessive Length 7

9 condinparallel(D1,D2,T1,T2):- nparallel(D1,D2),on(D1,T1),

10 on(D2,T2),T1 != T2.

12 energythr(S,T,TH) :- S = #sum {E,D: weight(D,T,E,M)},

13 timeslot(T), max_energy(TH), S < TH.

15 schedule_pref(PR,S) :- PR = #sum{P,D,T:pref(D,T,P,STD),on(D,T)},

16 S = #sum{STD,D,T:pref(D,T,P,STD),on(D,T)}.

17 user_pref(P,S,@pref_con(P,S,alpha,beta)) :- schedule_pref(P,S).

18 condiuser(PREF,SS) :- user_pref(PREF,SS,C), C = 1.

20 costthr(S, cost_threshold) :- S = #sum {E*M,D,T: weight(D,T,E,M)},

21 S < cost_threshold.

23 #script (python)

24 import clingo

25 def pref_con(pref,ss,alpha,beta):

26 cdf_value = cdf((alpha - pref) / ss)

27 return cdf_value * 100 <= 100 - beta

28 #end.

