Explaining ASP-based Operating Room
Schedules

Riccardo Bertolucci![0000-0001-7356-1579] " Ciarmine
Dodaro2[0000-0002-5617-5286] Fyancesco Ricca2l0000-0001-8218-3178
Galata3[0000-0002-1948-4469] \[arco Maratea![0000—0002-9034—2527]

3[0000—0002—0601—8071]

I, Giuseppe
, and Ivan
Porro

L University of Genoa, Genova Italy
2 University of Calabria, Arcavacata, Rende CS, Ttaly
3 SurgiQ srl, Genova, Italy

Abstract. The Operating Room Scheduling (ORS) problem refers to
the task of assigning patients to operating rooms. An automated solution
able to solve the ORS problem in real world scenarios should also be
“explainable” to be fully acceptable. Answer Set Programming (ASP)
has been applied successifully to solve the ORS problem. However, when
the available resources are not enough to satisfy user’s requirements (e.g.,
insufficient number of free beds) the system cannot compute a schedule,
and also cannot provide an explanation for that “negative” result.

In this work, we present an extension of the aforementioned ASP-based
approach to ORS problem that is also able to provide explanations (in
terms of input facts) that caused the absence of solutions. The explana-
tion computation technique builds on the ideas employed by the ASPIDE
debugger for ASP programs. Preliminary experimental results show the
viability of the approach.

Keywords: Answer set programming - Explainability - Operating Room
Scheduling.

1 Introduction

The increasing use of Artificial Intelligence (AI) methods in applications is affect-
ing all parts of our lives and the need for explainable methods is becoming even
more important. Explainability is one of the most heavily debated topics when
it comes to the application of Al in healthcare. Even though Al-driven systems
have been shown to outperform humans in certain tasks, the lack of explain-
ability features continues to spark criticisms (Miller 2019, Das and Rad 2020).
For these reason, we focus on improving explainability techniques for transpar-
ent models. Due to its rich set of high level language constructs Answer Set
Programming (ASP) is a well suited Al language to develop explainable models
(Teppan and Zanker 2020, Patil and Framling 2021, Alviano et al. 2020). During
the validation of a tool recently-devised to solve the Operating Room Scheduling
(ORS) problem (Dodaro, Galata, et al. 2019), we recognized the need to unfold

2 R. Bertolucci et al.

the decision-making process to an user not specialized in AI. The ORS problem
amounts to computing an assignment of patients to beds on operating room, a
task that become even more relevant task during the COVID19 pandemic.

The above-mentioned tool for ORS is based on Answer Set Programming
(ASP). ASP (Brewka, Eiter, and Truszczyniski 2011; Van Harmelen, Lifschitz,
and Porter 2008) is a popular AI paradigm for decision-making and problem-
solving that has proven useful in a variety of application areas, such as biology
(Gebser et al. 2011), psychology (Chaudhri and Inclezan 2015; Balduccini and
Girotto 2010), and many others (Erdem, Gelfond, and Leone 2016). ASP is a
declarative programming language used to specify a problem in terms of gen-
eral inference rules and constraints, along with concrete information about the
application scenario. Despite the declarative nature of ASP, the development of
an explainability layer on top of ASP systems is still subject of research and de-
bate (Fandinno and Schulz 2019). The ORS tool presented in (Dodaro, Galata,
et al. 2019) resulted to be effective in practice in computing schedules, especially
when there are enough resources. However, when the available resources are not
enough to satisfy user’s requirements (e.g., insufficient number of free beds) the
system cannot compute a schedule, and also cannot provide an explanation for
that “negative” result. This makes the tool not fully acceptable in practice, since
neither explanation nor a hint on how to solve the problem is provided.

In this work we present a framework for the generation of the needed ex-
planations. In particular, our approach aims at generating explanations in case
the instance modeling the ORS problem is incoherent, hence the system is not
able to compute a solution. More in detail, our aim is to isolate the facts in
the input that led to the incoherence: this procedure it is called facts checking.
Furthermore, we make this knowledge available in a readable fashion for inex-
perienced users such as medical staff. The explanation computation technique
builds on the ideas employed by the ASPIDE debugger for ASP programs (Do-
daro, Gasteiger, et al. 2019). Preliminary experimental results show the viability
of the approach. In the following, we assume the reader is familiar with ASP.

2 Explainability layer

The aim of this work is to integrate the work done and a debugging tool able to
perform fact checking. Indeed, our aim is to identify which atoms modeling the
input led to the unsatisfiability. For this reason, we extended the capabilities of
an already existing tool (Dodaro, Gasteiger, et al. 2019) in order to identify the
single or the set of facts atoms that led to the inconsistency of the encoding.
Roughly, the tool described in (Dodaro, Gasteiger, et al. 2019) works by adding
adornments atoms to the rules of the program, and then detecting a minimal
set of adorned atoms that cause the inconsistency (reason for the inconsistency).
We build on this idea and, instead of adorning the rules of the program (which
is provably correct), we apply the adornment to input facts. Moreover, in order
to improve the performances of the system, we perform some preprocessing on
the atoms we are testing which consist on the selection of the atoms that are

Explaining ASP-based Operating Room Schedules 3

most likely to led to inconsistency. This selection was carried out under some
assumptions: (i) The order in which the atoms are checked affect the perfor-
mances. (ii) The faulty atoms typology can be: beds(SP,AV,D), which defines
the beds availability, or duration(N,O,S), which defines duration of operations.
Once the atoms are identified, the system will extract the information from the
atoms identified and use this information to give to the user the most complete
answer on the cause of the impossibility to find a proper schedule.

3 Preliminary test

We tested our framework under the following assumptions: (i) the test were
carried out with a single encoding with 5 different configuration of the data: 2
representing the data necessary for the schedule of 5 days of operations and 3
representing the data necessary for the schedule of 10 days of operations, (ii) for
each configuration we are measuring the computation time from the beginning
to the moment in which the error is found, (iii) the set of facts included in the
search are subject to a shuffle, in which the atoms are shuffled each time a new
search begin, or to a reverse, in which the atoms are reversed once instead. Under
these assumptions we were able to identify two facts typologies that could lead
to the inconsistency of the problem: (a) the lack of available beds in a certain
speciality, given by facts of the type beds(SP,AV,D), and (b) the duration of a
certain operation is higher than the available time of each operating room of
each day in a certain specialty, given by facts of the type duration(N,O,S).

As a sum up of our results, the reasons that can make a fact cause of the inco-
herence are multiple. In fact, analysing the knowledge represented by each fact,
it is possible, for a domain expert, to categorize the source of the incoherence:
If the error is related to the number of beds available in a certain speciality SP
in the day D the causes of the inconsistency could be: (i) the lack of beds in the
speciality in that specific day, (ii) the number of patients to be scheduled in the
speciality are too many, (iii) the maximum time for the schedule is too short, or
rather it is impossible to schedule all the patients in the amount of given days.
If the error is related to the fact that duration N of a certain session S is higher
than the available time of each operating room of each day in a certain specialty,
the causes of the inconsistency could be: (i) The time that a patient must spend
in an operating room is too high, or (ii) the sum of the times that all patients,
of a certain specialty (SP), must spend in an operating room is too high.
When all the faulty atoms are isolated, we are able to extract many useful in-
formation to retrieve to user in order to let him/her decide which solution fits
best such as: the specialty that is causing the fault, the list of patients with high
priority in those specialities and all their data (surgery duration, length of the
stay, etc), the day in which the fault occurs, and the number of beds available
in that day in the given specialty.

With all these information the user can choose the best way to solve the prob-
lem, e.g.: increasing the number of beds, increasing the number of maximum
days to schedule, decreasing the number of patients. The initial results gathered

4 R. Bertolucci et al.

after the preliminary test shows that this approach is able to extract information
from real-world scenarios data and generate explanations understandable by an
inexperienced user.

4 Conclusion

In this paper, we present an approach to explaining the outcome of an ASP-
based approach to the problem of operating room scheduling.The objective is to
explain why, in a certain situation, no appropriate schedule could be found, in
other words, why no answer set could be computed. The preliminary tests show
that the presented approach is able to identify the facts which led to the incon-
sistency of the solution. However, the generation of the explanations is highly
dependent on the treated domain: in order to be able to present an explanation
comprehensible to inexperienced users, the knowledge represented by the faulty
facts must be analysed by a domain expert with a deep understanding of the
encoding. As we stated in Section 2, the presented approach is able to find the
minimal set of adorned atoms. Since a single faulty fact is enough to lead to
the inconsistency, our strategy will be able to find one faulty fact at the time.
To overcome this problem and be able to find the complete set of faulty facts,
we included in our architecture a module that handles the inconsistency: the
process used in this model is highly dependent by the domain. However, the
process of finding a single faulty fact is applicable to any domain. However, the
explanation generated by our approach take under consideration only the input
facts: to generate exhaustive explications it is necessary to include this approach
in a more complex system which compute and join explanations from both the
set of input facts and the set of rules.

References

[Alv+20] Mario Alviano et al. “Answer Set Programming in Healthcare: Ex-
tended Overview.” In: IPS-RCRA@ AI* IA. 2020.

[BET11] Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczyniski. “An-
swer set programming at a glance”. In: Communications of the
ACM 54.12 (2011), pp. 92-103.

[BG10] Marcello Balduccini and Sara Girotto. “Formalization of psycholog-
ical knowledge in answer set programming and its application”. In:
Theory and Practice of Logic Programming 10.4-6 (2010), pp. 725
740.

[CI15] Vinay K Chaudhri and Daniela Inclezan. “Representing states in a
biology textbook”. In: 2015 AAAI Spring Symposium Series. 2015.

[Dod+19a] Carmine Dodaro, Giuseppe Galata, et al. “An ASP-based solution
for operating room scheduling with beds management”. In: (2019),
pp. 67-81.

Explaining ASP-based Operating Room Schedules 5

[Dod+19b] Carmine Dodaro, Philip Gasteiger, et al. “Debugging non-ground
ASP programs: Technique and graphical tools”. In: Theory and
Practice of Logic Programming 19.2 (2019), pp. 290-316.

[DR20] Arun Das and Paul Rad. “Opportunities and challenges in ex-
plainable artificial intelligence (xai): A survey”. In: arXiv preprint
arXiv:2006.11371 (2020).

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. “Applications of
answer set programming”. In: AI Magazine 37.3 (2016), pp. 53-68.

[FS19] Jorge Fandinno and Claudia Schulz. “Answering the “why” in an-
swer set programming—a survey of explanation approaches”. In:
Theory and Practice of Logic Programming 19.2 (2019), pp. 114-
203.

[Geb+11] Martin Gebser et al. “Potassco: The Potsdam answer set solving
collection”. In: Ai Communications 24.2 (2011), pp. 107-124.

[Mil19] Tim Miller. “Explanation in artificial intelligence: Insights from the
social sciences”. In: Artificial intelligence 267 (2019), pp. 1-38.
[PF21] Minal Suresh Patil and Kary Framling. Towards Explainable Agency

in Multi-Agents Systems Using Inductive Logic Programming and
Answer Set Programming. Tech. rep. EasyChair, 2021.

[TZ20] Erich Teppan and Markus Zanker. “Exploiting Answer Set Pro-
gramming for Building explainable Recommendations”. In: Inter-
national Symposium on Methodologies for Intelligent Systems. Springer.
2020, pp. 395-404.

[VLPOS] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Hand-
book of knowledge representation. Elsevier, 2008.

